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It is shown that, for a spherically symmetric expansion of a gas into a low pressure, 
the shock wave with area change region discussed earlier (Freeman & Kumar 
1972) can be further divided into two parts. For the Navier-Stokes equation, 
these are a region in which the asymptotic zero-pressure behaviour predicted 
by Ladyzhenskii is achieved followed further downstream by a transition to 
subsonic-type flow. The distance of this final region downstream is of order 
(pressure)-$ x (Reynolds number)-). 

1. Introduction 
In a recent paper the authors (Freeman & Kumar 1972, subsequently referred 

to as I) described the spherically symmetric expansion of a viscous heat- 
conducting gas into a region of low pressure for small Reynolds number according 
to the Navier-Stokes equations. 

It was shown that, in terms of the inverse Reynolds number a based on sonic 
conditions (denoted by suffix *), the motion could be described by three regions: 
an inviscid region characterized by r / r ,  of order one, an intermediate region 
where r / rg  was of order a-p with ,u = [Zy- 1 + 2o(y- 1)J-1 and y the ratio of 
specific heats and a shock layer where r / r ,  was of order cr1. Satisfactory matching 
was achieved between these regions and it was shown that the full numerical 
solutions of the equations exhibited this structure. The flow in the final shock- 
layer region was assumed to terminate at infinity in a subsonic-type flow where 
the pressure was finite but small. Since according to the ideal-gas law the pressure 
p is related to the density p and temperature T by 

P = PET, 

with R the gas constant, and the mass flow is conserved by the relation 

M = pur2, 

where N is the constant mass flow and u is the radial velocity, we may write 

p = MRT/ur2. 

Introducing non-dimensional quantities P = p/p*,  6 = T/T* and w = u/u*, this 
becomes P = 8X2/W, (1.1) 
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where x = r,lr since M = p+u,r2, and p* = p+ RT,. Thus the requirement that 
the pressure remains significant in the shock layer demands that P shall be 
O(a2) if 0 and w are of order one and x is of order a. Using Y = x/a as the variable 
in the shock layer we obtain 

The background pressure must be of order a2 therefore. The shock-layer flow 
is essentially a region where area change and dissipation become equally im- 
portant and hence our concern is essentially in obtaining the shock-wave structure 
including the area change. Since the asymptotic behaviour downstream of the 
shock wave is what one would, in inviscid terms, describe as subsonic, we require 
that w/Y2 -+ W,, a constant, and e --f $(y  + 1 )  as Y + 0. As the pressure level is 
inversely proportional to W,, the zero-pressure limit is thus characterized by 

It has been pointed out by Ladyzhenskii (1962) that the limiting behaviour 
at  infinity of the Navier-Stokes equations for a finite is not the supersonic 
inviscid limit (a  = 0). Indeed it is possible to show that no solution with w finite 
exists as Y -+ 0. Ladyzhenskii suggests that the correct asymptotic behaviour 
for zero pressure is given by a solution that has 0 finite but velocity zero in such 
a way that w/JY remains finite. Since the approach of the velocity to zero is 
slower than the subsonic inviscid result this implies that the pressure is zero 
from (1.1).  This might be expected to be the limiting behaviour therefore for the 
limit W, infinite. If this is the case then the nature of the non-uniformity asso- 
ciated with W, -+ 00, Y -+ 0 is immediately evident since we require that 

Pla2 = 0Y"w. (1.2) 

w, -+ 03. 

or 
and 

w, Y2 = O(.JY) ,  

Y = O ( W ; ~ ) ;  

w = O(w, Y2) = O(W,+). 

Since 8 approaches +(y + 1 )  in a subsonic-type limit and is constant in the zero- 
pressure limit, it is to be expected that 8 remains constant to first order in this 
region. 

It remains to  decide whether such a variation is consistent with the equations 
of motion. 

2. Shock-layer structure 
The Navier-Stokes equations in the shock layer may be written as 

and 

with boundary conditions 

w/Y2-+Wo, S - + + ( y + l )  as Y+O, 

where CT is the Prandtl number. 
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The matching as Y -+ 03 has already been discussed in I. Our concern is with 
the limit W, + 00 near Y = 0.  Using the information deduced;babove, we write 

w = w<+ w, z = Y W t ,  8 = +(y+l)+$W,f* (2.3) 

Substituting in (2.1) and (2.2) gives to first order as Wo-+oo 

(2.4) 

and 
(y-1)-  w2 = [--+--I 3 dqi y - l d W 2  

z 4odz 2 dz ‘ 

The boundary conditions are given by 

WIz2 = 1 as z -+ 0, W/z+ = constant as z -+ 03, ( 2 - 6 )  

where the constant is given by the matching with the asymptotic expansion 
upstream. Writing (2.4) as 

where I’ = y-l[+(y + l)]l-@, we obtain 

W/zfr+ (grp as z+m. 

Equation (2.7) may be written in a simpler form if the variable U = W/z21’9 is 
introduced. It then becomes 

with U = r-4 at  z = 0; Uz% = ($)* at z = co. 
This equation has been obtained by Bush & Rosen (197 1) in their solution for 

the expansion into a vacuum in the case y = 1. It can be integrated directly to  
give 

where A is a constant. 
z4 d Uldz + I lU = A ,  (2.9) 

The solution which satisfies the given boundary conditions is 

or 

Rewritten in terms of unsealed variables this becomes 

W r 
+log l-- =-- ( $Y2) 3Y3w;’ 

from which the two asymptotic behaviours are obtained in the limits as 

I w = W o Y 2  as z + Q ,  
w = Y+(y7)* as z -+co .  

(2.10) 

(2.11) 

(2.12) 

(2.13) 



394 N .  C. Freeman and S. Kumar 

FIGURE 1. Velocity in final layer from equation (2.11) (logarithmic scales). 

This solution thus matches the first terms of the two expansions. It is, of course, 
necessary that subsequent terms of the expansion are themselves uniformly valid 
in the appropriate limits. 

W. B. Bush (private communication) has indicated that the higher order terms 
of the Ladyzhenskii expansion do not give a uniformly valid expansion. In 
particular, he shows that, relative to the first term, the term in the expansion of 
order as behaves like Y-8 for Y + 0. This implies that a breakdown will occur in 
a region where Y = O(a). Since the previous theory assumes that Y = O( WgQ), 
this would impose a limitation on the previous theory that W, = o(a-s). Or, in 
physical terms, a limitation on the ambient pressure, which is O(a2/W0), t o  greater 
than O(a5). 

The behaviour of the velocity from (2.11) is sh,own in figure 1 for y = g, 
w = 3 and g = 3. 4 4 

3. Numerical results 
Results were given in I for values of W, of 1, 10 and 100 (for y = $ and 

CT = w = 2). These results, together with a further computation for W, = 1000, 
are shown in figure 2. These may be compared with the results shown in figure 1 
in terms of scaled variables. Since the plot is logarithmic, the effect of varying 
W, is simply to displace the curves by a constant amount in each direction. 

The nature of the solution in the shock layer itself in the limit of W, -+ co is 
more difficult to obtain since it is necessary to integrate the full equations between 
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FIGURE 2. Velocity in shock layer and final layer from numerical 
solutions (logarithmic scaleg). 
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FIGURE 3. Velocity in shock layer: zero-pressure solution (logarithmic scales). 
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two singular points. The nature of this limiting behaviour can however be 
observed by looking at the variation of the numerical solutions with W, as in 
figure 3. 

4. Conclusion 
It has been shown how in the limit of very low pressure the structure of the 

flow field can be obtained for the Navier-Stokes equations. It is of interest to 
compare these results with the work of Brook & Hamel (1972), who attempt to 
construct such a solution for the Boltzmann equation. They introduce two length 
scales into the problem. These areR,, which represents the free path of a molecule 
emanating from the source in a uniform sea of background molecules, and Rp, 
which represents the penetration distance of a background molecule into the 
source gas. In  terms of the variables used in this paper, we find that 

R, = O(a/P), Rp = O(l/a).  

Further it is assumed that Rp < R,. 
They consider two regions where 

This first region is seen to be the region of the shock layer, where Y = O(l), 
and the second a region where Y = O(P/a2) = O( W;l). The latter region is small 
compared with the former since R, < R, implies Pla2 < 1. It will be seen there- 
fore that a region whose thickness is of order ( W T ~ )  is not required as in this 
paper. This is, of course, most probably due to the special nature of the break- 
down for the Navier-Stokes equations. However, since tihe Boltzmann equation 
gives rise to a much more complex situation, this point is worthy of further study. 
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